
TU Bergakademie Freiberg

Faculty for Mathematics and Computer Science

Summer Semester 2015

German Title: Web-basierte Komposition von 3D-Szenen für deren

serverseitige Weiterverarbeitung im Roundtrip3D Projekt

Supervisor: Prof. Jung

Matthias Lenk

Bachelor Thesis

Web-based 3D-scene composition for
further server-sided processing in the

Roundtrip3D project

Name: Danny Arnold

Matriculation Number: 52315

Major: Applied Computer Science

Email: danny.arnold@student.tu-freiberg.de

Date: November 4, 2015

Eidesstattliche Erklärung

Ich, Danny Arnold, versichere, dass ich diese Arbeit selbstständig ver-
fasst und keine anderen Hilfsmittel als die angegebenen benutzt habe. Die
Stellen der Arbeit, die anderen Werken dem Wortlaut oder dem Sinn nach
entnommen sind, habe ich in jedem einzelnen Fall unter Angabe der Quelle
als Entlehnung kenntlich gemacht. Diese Versicherung bezieht sich auch auf
die bildlichen Darstellungen.

Freiberg, November 4, 2015

CONTENTS CONTENTS

Contents

Contents iv

1 Introduction 1

1.1 Motivation . 1

1.2 Scope . 2

2 Basics and Related Work 4

2.1 Scene-Graph . 4

2.1.1 Culling . 4

2.1.2 Transformations . 5

2.1.3 Reusing Nodes or Subtrees 5

2.2 Declarative Scene Description via X3D 5

2.3 Declarative Scene Description for the Web via X3DOM 5

2.4 3D Application Modeling via SSIML 8

2.5 Roundtrip 3D . 8

2.6 Related Work . 8

2.6.1 3D Meteor . 9

2.6.2 Collaborative Working with Blender 9

2.6.3 Gizmos . 10

2.6.4 Component Editor . 12

2.6.5 Real-Time Collaborative Scientific WebGL Visualiza-
tion with Web Sockets 12

2.6.6 ParaViewWeb . 13

3 Concept 14

3.1 Server . 14

3.1.1 Node.js . 14

3.1.2 Koa . 15

3.2 Client . 15

3.2.1 Synchronization Process 16

Terminology . 16

Data Binding . 22

3.3 Communication . 25

iv

CONTENTS CONTENTS

4 Implementation 26
4.1 Server . 26
4.2 Client . 26

4.2.1 Angular . 26
Bootstrapping . 27
Modularisation and Dependency Injection 27
Views . 27

4.2.2 React . 28
4.2.3 Synchronization Process 31

5 Conclusion 33
5.1 Example . 33

Bibliography 36

List of Listings 40

List of Figures 43

v

1 INTRODUCTION

1 Introduction

The goal of the thesis is to create an editor for 3D (3 dimensional) scenes,
using web technologies, which enables its users to post-process X3D scenes.
These scenes are the product of a tool that was implemented as part of the
DFG research project Roundtrip3D (R3D) [27].

1.1 Motivation

As part of the R3D project, a round-trip framework was developed. This
framework also includes a graphical editor for SSIML (Scene Structure and
Integration Modeling Language) [28] models, to describe 3D applications.
Then R3D can be used to generate boilerplate code for multiple programming
languages, such as JavaScript, Java or C++, and an X3D file describing the
scene. The X3D file may contain references to other X3D files containing
the actual 3D data (e.g. a car and its corresponding tires), hereafter called
inlines. These files are created by exporting objects from a 3D computer
graphics software (e.g. Blender, Maya or 3DS Max).
The problem that arises is that each object is usually in the center of its
own coordinate system. So they need to be translated, rotated and maybe
even scaled, to result in the desired scene (e.g. a car where the tires are in
the places they belong to and not in the center of the chassis). The scene
structure (see Listing 7) is mostly generated. Attribute values of respective
nodes, such as transform nodes, need to be adjusted in order to compose the
overall 3D scene.

This can be achieved by adjusting translate, rotate and scale properties
to arrange 3D objects. To exacerbate this problem further, the orientation
the 3D artists chose for its object may be unknown if there is no convention
for 3D modeling. The main problem is, that 3D transformations, such as
translation, orientation and scale of single 3D geometries, need to be ad-
justed. So far, there is no graphical tool that meets both of the following
requirements:

• User friendly and straight forward composition functionalities for X3D
scenes and

• preservation of (generated) information, such as node names or com-
ments (necessary to merge the changed files back into the source model).

1

1.2 Scope 1 INTRODUCTION

Figure 1 demonstrates multiple orientations a 3D model of a wheel can
have. Figures 1a-c are common orientations, since it is disputable which of
these could be considered the norm. But if one depends on art from 3rd
parties, the orientation and position could be completely arbitrary like in
Figure 1d).

These properties could be added and adjusted via any text editor by
opening the generated X3D file, but the resulting work-flow is not user-
friendly. The following list explains the work-flow using just a text editor.

1. Model the 3D application, including the 3D scene structure.
2. Generate the 3D scene and the application code.
3. Run the application and evaluate the scene and think about what

objects need to go where and whether they need to be scaled.
4. Type random translation, rotation and scale values into the transform

nodes.
5. Run the application again and evaluate whether the transformations

are correct (since one does not know anything about the orientation of
the object).

6. Go back to 4. until all objects are placed correctly.

Tools like Maya or Blender could be used for this, but their import and
export filters discard important meta-data that is necessary for the round-
trip transformation. This is what SceGraToo is meant to be. SceGraToo
addresses both of these issues. It allows for loading the root X3D file and
changing all transformations, containing the inline nodes, using mouse inter-
actions. For fine grained control SceGraToo also contains a tree view that
allows the user to input exact attributes for translations, rotations and scale
(see Figure 9).

1.2 Scope

The provided application (SceGraToo) addresses two issues:

1. Allowing the composition of generated X3D scenes (with focus on us-
ability). E.g., accompanying the 3D view, a tree view for fine grained
editing, that should not only visualize the 3D scene’s structure, but
also allow for entering concrete coordinate values.

2

1.2 Scope 1 INTRODUCTION

2. During the editing process, the preservation of all information/meta-
data must be guaranteed.

3

2 BASICS AND RELATED WORK

2 Basics and Related Work

This section examines fundamental and underlying technologies needed to
comprehend the described problems and their solutions.

2.1 Scene-Graph

Scene-graphs can be used to group and organize 3D objects, their properties
and concerning transformations. A Directed Acyclic Graph (DAG) can be
used to represent a scene-graph. It starts with a root node that is associ-
ated with one or more child nodes. Each child node can be an object or a
group, again containing more child nodes. A group can contain associated
transformation information, like translation, rotation or scaling. This struc-
ture has certain advantages compared to applying all transformations to the
raw meshes and sending everything to the Graphical Processing Unit (GPU)
[1]. SSIML scene-graphs differ from the above definition and there are three
types of nodes:

• Transform nodes,
• geometry nodes and
• group nodes.

2.1.1 Culling

Before using structures like scene-graphs, all polygons were sent to the GPU.
The GPU would then test which polygons are actually in the view and had
to be rendered. The problem of this approach is that this information was
only known after doing a lot of calculations for every polygon.
With a scene-graph it is possible to start from the root and traverse the
graph, testing the bounding box of each group and only sending it to the
GPU if it is completely visible. If it is not, the whole sub-tree is not sent to
the GPU. If it is partially visible, the same process is applied to the sub-tree.
By using a structure that retains more information about what it represents,
it is possible to let the CPU do more of the heavy lifting and unburden the
GPU.

“Rather than do the heavy work at the OpenGL and polygon
level, scene-graph architects realized they could better perform

4

2.2 Declarative Scene Description via X3D2 BASICS AND RELATED WORK

culling at higher level abstractions for greater efficiency. If we
can remove the invisible objects first, then we make the hard-
ware do less work and generally improve performance and the
all-important frame-rate.” [1]

2.1.2 Transformations

Another advantage of scene-graphs is the way transformations work. Instead
of applying them to the meshes directly, and keeping track of what meshes
belong to the same object (like the chassis, the tires and the windows of a
car), they can simply be nested under the same transformation group. The
transformation thus applies to all objects contained by the group.

2.1.3 Reusing Nodes or Subtrees

With the ability to address nodes it is possible to reuse them (and all con-
tained information and child nodes). For a car, it would be enough to have
only one node containing the geometry for a tire, all other tires are merely
referencing the tire with the geometry information (see Listing 1). That way
the memory footprint and the overall complexity of an application can be
reduced.

2.2 Declarative Scene Description via X3D

X3D [2] is the XML (Extensible Markup Language) representation of VRML
(Virtual Reality Modeling Language) which was designed as a universal in-
teractive 3D exchange format, much like what HTML (Hypertext Transfer
Protocol) is for textual documents or SVG for vector graphics. Due to its
XML structure it can be integrated in HTML documents. The Frauenhofer
Institute pursued to implement an environment that could interpret and vi-
sualize X3D in the browser, by using a WebGL context. It is called X3DOM
[3] and it is extensively used by SceGraToo, the tool that arose from this
thesis.

2.3 Declarative Scene Description for the Web via X3DOM

As said in the previous section, X3DOM was developed by the Frauenhofer
Institute to realize the vision that started VRML in the first place: mark

5

2.3 Declarative Scene Description for the Web via X3DOM2 BASICS AND RELATED WORK

1 <Group>
2 <Transform>
3 <Shape def="chassis">
4 <Appearance>
5 <Material></Material>
6 </Appearance>
7 <Box></Box>
8 </Shape>
9 </Transform>

10 <Transform>
11 <Shape def="tire">
12 <Appearance>
13 <Material></Material>
14 </Appearance>
15 <Torus></Torus>
16 </Shape>
17 </Transform>
18 <Transform>
19 <Shape use="tire"/>
20 </Transform>
21 <Transform>
22 <Shape use="tire"/>
23 </Transform>
24 <Transform>
25 <Shape use="tire"/>
26 </Transform>
27 </Group>

Listing 1: Example X3D group, showing the use of def and use attributes .
Figure 2 shows the rendered car.

up interactive 3D content for the web. On the web there are two entirely
different approaches to describe 2D or 3D graphics:

• imperative
• declarative

6

2.3 Declarative Scene Description for the Web via X3DOM2 BASICS AND RELATED WORK

Table 1: The matrix in this table classifies X3DOM together with other web
standards concerning computer graphics [3].

2D 3D

Declarative Scalable Vector Graphics (SVG) [4] X3DOM [3]

Imperative Canvas [5] WebGL [6]

As can be seen in Table 1, X3DOM complements the already existing
technologies perfectly.

7

2.4 3D Application Modeling via SSIML2 BASICS AND RELATED WORK

2.4 3D Application Modeling via SSIML

Heterogeneous developer groups, are comprised of people with different dif-
ferent skills and terminologies (e.g. programmers and 3D designers), have
their difficulties working together. They work in different domains and use
different tools adjusted to that domain [26].

SSIML is a graphical approach to unify the scene-graph model and the
application model, thus making the communication between the different
parties easier.

2.5 Roundtrip 3D

As stated above, when developing 3D applications, many different kinds of
developers are involved, i.e. 3D designers, programmers and, ideally, software
designers. Figure 3 shows the R3D editor with an example SSIML diagram.
Figure 4 shows the proposed work-flow.

Roundtrip3D was a research project that, amongst others, resulted in a
graphical editor for SSIML models. These SSIML models are used as input
to generate source code, such as JavaScript, Java or C++, and an X3D file
describing the scene. These code bases are further refined by the respec-
tive developers, i.e 3D designers or programmers. R3D offers an approach
for merging the developers’ changes back into the main model. After all
working copies are merged back into the main model (dropping unwanted or
conflicting changes), all code bases are regenerated, including the develop-
ers refinements and delivered to the individual developers. After this step,
every developer has a copy of the project that is consistent with everyone
else’s. [27] It is paramount that the tools used to refine the scene must not
autonomously change scene-information that is relevant for the round trip
process. Such changes are for instance automatically renaming nodes, re-
structuring the scene-graph’s by adding group nodes or removing comments
or attributes. This thesis addresses issues by proposing a new 3D composi-
tion tool that retains all scene-information.

2.6 Related Work

As described in section 1.1, efforts in the following fields are essential for this
work.

8

2.6 Related Work 2 BASICS AND RELATED WORK

• Collaborative working on 3D models.
• Online 3D editors.

2.6.1 3D Meteor

This simple 3D editor allows users to add and remove colored blocks to a
scene. A scene can be opened and edited by multiple users simultaneously.
The synchronization is leveraging meteor’s database collection subscription
features. Meteor applications are comprised of a client side and a server side
part. The client can subscribe to database collections and automatically gets
notified of changes to that collection by the server. The only thing that is
synchronized is an array of boxes. A box is an object with an x, y, z and a
color property, describing its position. When a box is added to the collection,
the collection is synchronized with the server. The server informs all other
browser instances that show this scene, that this box was added to the boxes
collection. These browser instances reevaluate the template that renders the
X3DOM scene to the Document Object Model (DOM) and update the DOM
to contain the new box, thus synchronizing all browser instances. [7]

2.6.2 Collaborative Working with Blender

As part of an asset management system, the Université du Québec à Montréal
implemented a plug-in for Blender to enable collaborative working. An artist
can record changes to wire-meshes and store them on a server. Another artist
can download these changes and apply them to his working copy. A set of
changes is a simple list of vertices and their movement in the x, y and z
direction (see Listing 2). [30]

1 95 [0.0000, 0.0000, 0.0000]
2 295 [0.0027, 0.0013, 0.0000]
3 309 [0.2123, 0.1001, 0.0000]
4 311 [0.3029, 0.1429, 0.0000]

Listing 2: This shows a set of changes of 4 polygons and how they where
moved.

These sets are saved on the server. Other users, working on the same
object, can apply them to their working copies. They can actually be applied
to any object that has the same number of vertices. That is also one of the

9

2.6 Related Work 2 BASICS AND RELATED WORK

shortcomings. Adding or removing vertices cannot be handled by the plug-
in. And the synchronization is not in real time. As a result it is more
comparable to version control systems, like git, but for 3D models.

2.6.3 Gizmos

Gizmos, also called manipulators, are handles or bounding boxes with han-
dles that manipulate their containing objects in a predefined way when being
dragged (Figures 6 to 8). [8]

In X3D, gizmos can be realized with specialized X3DDragSensorNodes
[9], like:

SphereSensor “SphereSensor converts pointing device motion into a spher-
ical rotation around the origin of the local coordinate system [10].”

CylinderSensor “The CylinderSensor node converts pointer motion (for
example, from a mouse) into rotation values, using an invisible cylinder
of infinite height, aligned with local Y-axis” [11].

PlaneSensor “PlaneSensor converts pointing device motion into 2D trans-
lation, parallel to the local Z=0 plane. [12].”

The sensors track drag events on their siblings. In the example in Fig-
ure 8, the PlaneSensor tracks drag events on the cones and the cylinder
that make up the cyan handle. Part of the structure of the scene can be
seen in Listing 3. Every time it detects a drag event, it converts it into
a 2D transformation and raises an onOutPutChange event. The callback
processTranslationGizmoEvent is registered as an event handler. In this
function the position of the handle is adjusted to make it follow the drag
movement, also the position of the teapot is adjusted.

Having the handles being 3D objects within the scene, that look touch-
able and interactable, make it easier for users to find their way around the
application. Instead of having to learn keyboard shortcuts, users simply use
their intuition and knowledge about how to interact with objects in the real
world.

10

2.6 Related Work 2 BASICS AND RELATED WORK

1 <group>
2 <planeSensor autoOffset=’true’ axisRotation=’1 0 0 -1.57’

minPosition=’-6 0’ maxPosition=’6 0’
onoutputchange=’processTranslationGizmoEvent(event)’>

↪→

↪→

3 </planeSensor>
4

5 <transform id=’translationHandleTransform’>
6 <transform translation=’0 -5.5 8’ rotation=’0 1 0 1.57’>
7 <transform translation=’0 0 1.5’ rotation=’1 0 0 1.57’>
8 <shape DEF=’CONE_CAP’>
9 <appearance DEF=’CYAN_MAT’><material diffuseColor=’0

1 1’></material></appearance>↪→

10 <cone height=’1’></cone>
11 </shape>
12 </transform>
13 <transform rotation=’1 0 0 -1.57’>
14 <shape>
15 <appearance USE=’CYAN_MAT’></appearance>
16 <cylinder></cylinder>
17 </shape>
18 </transform>
19 <transform translation=’0 0 -1.5’ rotation=’1 0 0

-1.57’>↪→

20 <shape USE=’CONE_CAP’></shape>
21 </transform>
22 </transform>
23 </transform>
24 </group>

Listing 3: PlaneSensor node to register drag event on its siblings. This is
part of the scene depicted in Figure 8.

11

2.6 Related Work 2 BASICS AND RELATED WORK

2.6.4 Component Editor

The X3DOM maintainers released their Component Editor [13]. It was re-
leased after the the work on SceGraToo started. Its development took about
a year and three people working on it part-time [14]. Although it does offer
all the wanted scene composition features, it lacks the ability to:

• Load an existing X3D file,
• serialize 3D scenes to X3D files and
• upload X3D files that can be included as inline nodes.

Scenes can only be deserialized and serialized as JavaScript Object Nota-
tion (JSON) representations (see Listing 4). Conversion between the formats
may be possible, but meta information like Identifiers (IDs) in comments
would be lost. And these are important for the round-trip process (see 2.5)

1 {
2 "0": {
3 "type": "Box",
4 "transform": "1.000000, 0.000000, 0.000000, 0.000000,

\n0.000000, 1.000000, 0.000000, 0.000000, \n0.000000,
0.000000, 1.000000, 0.000000, \n0.000000, 0.000000,
0.000000, 1.000000",

↪→

↪→

↪→

5 "referencePoints": ["p1", "p2", "p3", "p4", "p5", "p6"],
6 "parameters": {
7 "Size": [1, 1, 1],
8 "Positive Element": "true"
9 }

10 }
11 }

Listing 4: The JSON format used by the component editor to save scenes.

2.6.5 Real-Time Collaborative ScientificWebGL Visualization with
Web Sockets

Using web sockets instead of AJAX is a promising approach performance wise
[29]. Especially the cut down on latency. It is over all very similar to the
approach that was considered for SceGraToo, but not implemented due to its
complexity. In the end, the differences between SceGraToo’s requirements

12

2.6 Related Work 2 BASICS AND RELATED WORK

and theirs outweigh the similarities. Besides visualizing a scene, SceGraToo
also has to manipulate it. So, to achieve a spectator mode, like in this work,
not only the viewpoint would have to be synchronized, but also the whole
scene. This can either be done by sending the whole scene to the other
clients on every change, or sending change sets, which poses a challenging
task. They visualize a specific dataset in a threejs’s specific JSON format
[15]. SceGraToo only needs to render X3D scenes. Converting the scene into
another format and having it rendered by another scene graph framework is
unnecessary, since X3DOM is pretty good at this.

2.6.6 ParaViewWeb

It is simple to use out of the box, but needs a paraview server instance and
paraview does not support X3D as an input format. So using this, is unfor-
tunately not possible unless an X3D importer is written. The visualization
is mainly meant to explore data sets. There is no straight forward way to
manipulate the data. This can only happen by extending the visualization
pipeline via python scripts on the server. [16]

13

3 CONCEPT

3 Concept

SceGraToo uses a client server architecture. The scene data is stored on the
server and is to be extended by X3D files that are uploaded using a web
browser. In the following sections the initial design concept of SceGraToo is
illustrated.

3.1 Server

In the following I’ll state the server requirements and the technology that
were considered for the implementation.

3.1.1 Node.js

“Node.js is a platform built on Chrome’s JavaScript runtime for
easily building fast, scalable network applications. Node.js uses
an event-driven, non-blocking I/O model that makes it lightweight
and efficient, perfect for data-intensive real-time applications that
run across distributed devices.” [17]

Node.js allows for the straight forward implementation of web servers.
Listing 5 shows a server that looks up users from the database and returns
them as JSON to the browser.

1 const http = require(’http’)
2 const db = require(’db’)
3

4 http.createServer((request, response) => {
5 db.getuser(function(error, user) {
6 if (error) {
7 return res.status(404).send(error);
8 } else {
9 response.writeHead(200, {’Content-Type’:

’application/json’})↪→

10 response.send(user)
11 }
12 })
13 }).listen(1337, ’127.0.0.1’)

Listing 5: An example server in Node.js, using the http module in its stan-
dard library.

14

3.2 Client 3 CONCEPT

3.1.2 Koa

“Koa is a new web framework designed by the team behind Ex-
press, which aims to be a smaller, more expressive, and more
robust foundation for web applications and APIs. Through lever-
aging generators Koa allows you to ditch callbacks and greatly
increase error-handling. Koa does not bundle any middleware
within core, and provides an elegant suite of methods that make
writing servers fast and enjoyable.” [18]

Koa is used to make writing the server, and using asynchronouse func-
tions in request handlers simpler and clearer. See Listing 6 for the same
example from Listing 5 written with koajs. It is not only more concise, but
also more straight forward.

1 const db = require(’db’)
2 const koa = require(’koa’)
3 const app = koa()
4

5 app.use(function * (){
6 this.body = yield db.getUser()
7 })
8

9 app.listen(3000)

Listing 6: An example server utilizing the Koa framework.

3.2 Client

“I conclude that there are two ways of constructing a software design: One
way is to make it so simple that there are obviously no deficiencies and the
other way is to make it so complicated that there are no obvious deficiencies.
The first method is far more difficult.”

— Hoare, Turing Award Lecture 1980

The tree-view is the most important part of SceGraToo. It shows the
structure rather than the rendered representation. Different off-the-shelf
solutions, like angular or JQuery plug-ins, were tested against the following
requirements:

15

3.2 Client 3 CONCEPT

1. Custom HTML elements as part of tree nodes (e.g. multiple checkboxes
or multiple inputs),

2. ability to observe the tree node’s state changing,
3. binding to an arbitrary model and
4. detecting inconsistencies between the model and the view and recov-

ering from them.

Partially not met requirements:

• Custom elements as part of tree nodes and
• ability to listen to changes to the tree node.

Requirements none of the tested tools met:

• Binding to an arbitrary model and
• detecting inconsistencies between the model and the view and recov-

ering from them.

None of the off-the-shelf solutions could satisfy all expectations. After
evaluating a couple of solutions it was clear that the problem space was too
specific and a custom solution is required.

3.2.1 Synchronization Process

Of all requirements, the most complicated part is keeping the tree-view in
sync with the scene-graph, while the scene-graph is being modified and vice
versa.

Terminology

scene-graph: The X3D representation of the scene as part of the DOM, see
Listing 7 and the screenshot in Figure 10 from the Chrome DevTools.

scene-graph-node: A specific scene graph node (e.g. inline, transform
or scene node).

tree-view-component: Comprises all functionality related to parsing the
scene-graph and creating the tree-view out of individual tree-view-
node-components.

tree-view: The HTML representation of the tree-view-component as part
of the DOM, see Figure 9 and Listing 8 (HTML output shortened and
simplified).

16

3.2 Client 3 CONCEPT

tree-view-node-component: Comprises all functionality related to syn-
chronizing changes from a scene-graph-node to the corresponding tree-
view-node and vice-versa.

tree-view-node: The HTML representation of the tree-view-node-component
as part of the DOM, see Figure 12 and Figure 13.

1 <x3d version="3.0" profile="Interaction" width="708px"
height="354px">↪→

2 <!-- id=69b81d54-6e7a-4967-acca-b8c89ba90782 -->
3 <scene render="true" bboxcenter="0,0,0" bboxsize="-1,-1,-1"

pickmode="idBuf" dopickpass="true">↪→

4 <worldinfo>
5 </worldinfo>
6 <background skycolor="0.3 0.3 0.3"></background>
7 <viewpoint fieldofview="0.7" position="1 1 3" orientation="0.1

0.9 0.13 3.8">↪→

8 </viewpoint>
9 <!-- id=8d3f0a8a-b6d7-4acc-922b-ea59364443fa -->

10 <group render="true" bboxcenter="0,0,0" bboxsize="-1,-1,-1">
11 <transform render="true">
12 <!-- id=8459b736-5a9d-4688-b624-e519857a92fd -->
13 <inline url="projects/Red Box/src/redBox.x3d"

render="true" load="true">↪→

14 <Shape render="true" isPickable="true">
15 <Appearance sortType="auto" alphaClipThreshold="0.1">
16 <Material diffuseColor="1 0 0"

ambientIntensity="0.2"
shininess="0.2"></Material>

↪→

↪→

17 </Appearance>
18 <Box solid="true" size="2,2,2"></Box>
19 </Shape>
20 </inline>
21 </transform>
22 </group>
23 </scene>
24 </x3d>

Listing 7: Generated X3D example scene.

The aim is to keep the tree-view a consistent representation of the scene-
graph. The tree-view filters some nodes and attributes. As an example,
nodes contained in an inline are not shown, since SceGraToo’s task is only

17

3.2 Client 3 CONCEPT

1 <div>
2
3 <div>
4 <a> SCENE
5 </div>
6 <div>
7 <div>
8 <div>
9 <div>

10 render:
11 </div>
12 <div>
13 <input type="checkbox">
14 </div>
15 </div>
16 </div>
17
18
19 <div>
20 <a> WORLDINFO
21 <a>X
22 </div>
23 <div>
24 <div>
25 <div>
26 <div>
27 def:
28 </div>
29 <div>generatedWorldInfo1</div>
30 </div>
31 </div>
32 </div>
33 ...
34
35 </div>
36
37 </div>

Listing 8: Simplified tree-view structure.

to compose a scene of inlines, not to change something inside the inlines.
Also not all attributes are shown, but only the ones the user may be inter-

18

3.2 Client 3 CONCEPT

ested in (such as DEF, translate or rotate).
One approach is to instantiate the tree-view-component with a scene-

graph-node as root node. For all child nodes, the tree-view-component insta-
tiates new tree-view-node-components. These tree-view-node-components
create the corresponding tree-view-nodes, while further traversing the scene-
graph. For each scene-graph-node a corresponding tree-view-node-component
is created. If there are no child nodes left, the tree-view creation is done.
Each tree-view-node-component creates all DOM elements necessary to rep-
resent the corresponding scene-graph-node in the DOM. Also each tree-view-
node-component observes its corresponding scene-graph-node for attribute
mutations and added or removed child nodes and acts accordingly.

Depending on how the scene-graph is mutated, three main cases can be
differentiated:

a scene-graph-node is added A new tree-view-node-component is instan-
tiated, adding all DOM elements making up the tree-view-node to the
DOM.

a scene-graph-node is deleted The corresponding tree-view-node-compo-
nent is destroyed and all DOM elements making up that tree-view-node
are removed from the DOM.

a scene-graph-node is mutated The corresponding DOM elements that
make up the tree-view-node are altered to reflect the mutation.

Tree-view-nodes can also be used to edit scene-graph nodes’ properties.
When an input element, that contains the x value of a transformation, is
edited, its tree-view-node-component is notified of the change, by firing a
change event, to which the component subscribed, and applies the new value
to the corresponding scene-graph-node.

It is assumed, that the updates will always lead to a consistent state,
where the scene-graph and the tree node converge. It is also assumed, that
an application may be buggy and in that case the synchronization process
has no ability to detect if updates lead to an inconsistent state. It also has
no ability to recover from an inconsistent state.

In the following, two main issues are described.

Problem 1: keeping the tree-view consistent with the scene-graph
The difficulty, to make sure that incremental updates are error-free,

19

3.2 Client 3 CONCEPT

exacerbates even more when further functionality is added to the tree-
view, like checkboxes for specific properties or saving state in the tree-
view that is not part of the scene-graph, e.g the possibility to collapse
parts of the tree.

Problem 2: implementation effort For every new feature four pieces of
code have to be written:

1. Source code for parsing the scene-graph
2. Source code to generate the tree-view-node
3. Source code to synchronize changes to a scene-graph-node to the

corresponding tree-view-node
4. Source code to synchronize changes to a tree-view-node to the

corresponding scene-graph-node

This can be simplified if only the functionality for parsing the scene-
graph, and for creating the DOM elements that represent the scene-graph,
is implemented and, on every change, the whole tree-view is recreated by
repeating these steps.

Problem 1 is solved completely, because incremental updates are gone
and Problem 2 is reduced to the following two steps:

1. Source code for parsing the scene-graph and generating the tree-view
2. Source code to synchronize changes to a tree-view-node to the corre-

sponding scene-graph-node

Rerendering the whole part of the DOM on every change usually is inef-
ficient. Removing a big part of the DOM and replacing it would lead to a
reflow, which is the browser’s process of laying out the content. This pro-
cess is blocking, meaning the user can’t scroll or otherwise interact with the
application. [19]

React is used to minimize the possibility of a reflow. React calculates
a lightweight representation of what the DOM (called the virtual DOM)
should be like and compares that to the present DOM. It calculates a set of
patches and only applies these to the DOM.

From a developer’s point of view, the application is programmed like it
is completlely rerendered everytime something changes. From the browser’s
point of view only a minimal set of changes, only those that are required

20

3.2 Client 3 CONCEPT

to transform the DOM into the desired state, are applied, thus enormously
reducing the risk of a reflow.

The code below (Listings 9, 10 and 11) is for explanitary purposes to
describe how react works. It does not resemble react’s implementation in
any way:

1 <ol data-reactid=".0">

2 <li data-reactid=".0.0">scene

3 <ol data-reactid=".0.0.0">

4 <li data-reactid=".0.0.0.0">transform

5 <ol data-reactid=".0.0.0.0.0">

6 <li data-reactid=".0.0.0.0.0.0">inline

7

8

9

10

11

Listing 9: Old Virtual DOM

1 <ol data-reactid=".0">

2 <li data-reactid=".0.0">scene

3 <ol data-reactid=".0.0.0">

4 <li data-reactid=".0.0.0.0">transform

5 <ol data-reactid=".0.0.0.0.0">

6 <li data-reactid=".0.0.0.0.0.0">inline

7

8

9 group

10

11

12

Listing 10: Virtual DOM with newly created li node.

21

3.2 Client 3 CONCEPT

1 var li = document.createElement(’li’)

2 li.innerText = ’group’

3 document.querySelector(’[data-reactid=".0.0.0"]’)

4 .appendChild(li)

Listing 11: Patch

That means, as long as the code to parse the scene-graph and to generate
the lightweight representation of the tree-view is correct, the tree-view will
represent the current state of the scene-graph.

Data Binding Another approach is to utilize templates and data bind-
ing. Frameworks (like angular) or web components implementations (like
polymer) support templates and two way data binding. Following only an-
gular directives are examined, but the same should be possible with web
components.

An angular directive consists of a template and some JavaScript contain-
ing logic for creating the directive or reacting to events.

For each node a directive is instantiated, which creates a template ren-
dering the node. Also for each child it creates a new instance of itself.

Example:

The rendered structure is shown in Listing 12. The treenode (Listing
13) expands into the node name and a nodelist (Listing 14), that then
expands into a list of tree-nodes for each child node (Listing 15), that further
expand again (Listing 16). This recursive expanding stops when a treenode

is childless.

22

3.2 Client 3 CONCEPT

1 node: {

2 name: "scene",

3 children: [

4 {

5 name: "viewpoint"

6 },

7 {

8 name: "worldinfo"

9 }

10]

11 }

Listing 12: Example input data.

1 <treenode node="node">

2 </treenode>

Listing 13: The initial template, node is the node from the data in Listing 12.

1 <treenode node="node">

2 {{node.name}}

3 <nodelist ng-repeat=’node in children’ children=’children’>

4 </nodelist>

5 </treenode>

Listing 14: The template expands itself, putting the node’s name into a span
and adding a nodelist directive, that expands the node’s children.

23

3.2 Client 3 CONCEPT

1 <treenode node="node">

2 {{node.name}}

3 <nodelist ng-repeat=’node in children’ children=’children’>

4 <treenode node="children[0]">

5 </treenode>

6 <treenode node="children[1]">

7 </treenode>

8 </nodelist>

9 </treenode>

Listing 15: The nodelist expands the children array and renders a treenode
for every child.

1 <treenode node="node">

2 {{node.name}}

3 <nodelist ng-repeat=’node in children’ children=’children’>

4 <treenode node="children[0]">

5 {{node.name}}

6 </treenode>

7 <treenode node="children[1]">

8 {{node.name}}

9 </treenode>

10 </nodelist>

11 </treenode>

Listing 16: The treenode directive expands the nodes and renders their
names, since there are no nodes left to render they stop.

This is an minimal example to demonstrate how angular directives work
from a programmer’s point of view. The scene-graph is traversed and, for
each eligible child node, a new treenode is created. The double braces
are angular’s syntax to denote data-binding in templates. Data from the
elements scope is automatically inserted and kept up to date. Then, the
data-binding would ensure, that the tree-view and the model are kept in
sync when the treenode’s attributes are changed and the other way around.

24

3.3 Communication 3 CONCEPT

3.3 Communication

The client communicates with the server via a small HTTP API return-
ing JSON encoded data. Issuing a GET request to /projects returns all
projects stored on the server. Issuing a GET request to /projects/unicorn

returns all data about unicorn project.

25

4 IMPLEMENTATION

4 Implementation

In the following sections the technology that was eventually used to imple-
ment SceGraToo is dissected and explained in detail.

4.1 Server

The server has a small interface, meaning it does not have a lot of routes
it serves. When it receives a GET request from a client it tries to match
the request to one of its routes. If no route matches it tries to find a static
files that matches the requested route URL. If it finds the file, the file is
served to the client. If not a 404 HTTP code is returned, which means Not
Found. A POST route also exists for uploading content. POST and GET are
different HTTP methods. An HTTP request to the same route can happen
via different methods to evoke different action from the server [20].

Some of the routes the server answers to are:

POST /projects/:project/src/:file saving files being uploaded
GET /projects return all projects on the server
GET /projects/:project return all information for the project :project

4.2 Client

The client uses to frameworks to solve different problems. Angular is used
for managing and organizing most of the application, while react is used for
highly dynamic views, like the tree-view.

4.2.1 Angular

AngularJS is used for:

• Bootstrapping the application
• Modularization
• Dependency management
• Resource management
• Routing
• Less dynamic views

26

4.2 Client 4 IMPLEMENTATION

Bootstrapping Web applications need to be bootstrapped. There has to
be one entry-point for starting the the application. And this entry-point
needs to be called after all scripts, that are referenced in the HTML doc-
ument, have been downloaded from the server. Angular accomplishes this
by subscribing to the DOMContentLoaded event. Angular will then look for
DOM elements with an ng-app attribute. That attribute is set by the de-
veloper and tells angular, that the corresponding DOM element is supposed
to contain an application and the application’s name. The bootstrapping
process is described in Figure 14.

The code from Listing 17 initializes SceGraToo. In the config function,
routes are defined. When a link is clicked, the browser will not issue a request
to the server and load that page. Instead, a new controller takes over and
renders a different template. The advantage of this approach is that the user
perceives immediate feedback, while navigating. The application can render
the view and react to user input, while it is still waiting for some requested
resources from the server (like a list of all available projects). This approach
is called single-page application [31].

Modularisation and Dependency Injection Each controller, view or
service is contained in its own module and does not pollute the global names-
pace. An angular service is a lazily instantiated singleton. In a browser’s
JavaScript context, the global namespace refers to the namespace that be-
longs to the window object. Defining variables in a script defines these vari-
ables on the window object. Angular modules prevent this. Modules are
registered on a specific angular application (thus one website could also ac-
commodate multiple angular applications). The defined variables are con-
tained by creating a function that returns whatever the module is supposed
to contain, thus creating a closure. Listing 18 shows a module that creates
an Array and returns it. Modules can denote that they depend on other
modules. This can be seen in Listing 19. The MoveableUtils request that
the moveable module is injected into it when initializing. Angular creates a
dependency graph and resolves dependencies automatically.

Views Angular templates are mostly logic-less. Listing 20 shows a tem-
plate that renders all projects the corresponding controller retrieved from
the server.

27

4.2 Client 4 IMPLEMENTATION

1 window.angular.module(’scegratooApp’)
2 .config(function ($routeProvider) {
3 $routeProvider
4 .when(’/’, {
5 redirectTo: ’/projects’
6 })
7 .when(’/projects’, {
8 templateUrl: ’views/projects.html’,
9 controller: ’ProjectsCtrl’

10 })
11 .when(’/projects/:project’, {
12 templateUrl: ’views/project.html’,
13 controller: ’ProjectCtrl’
14 })
15 .when(’/projects/:project/:file*’, {
16 templateUrl: ’views/projects/:project/x3d/:file.html’,
17 controller: ’ProjectsProjectX3dFileCtrl’
18 })
19 })

Listing 17: This is how SceGraToo is initialized. It also shows how the
routing is defined. E.g. in line 4 to 6 for the index route (the one that is
requested when the request contains only the domain: www.example.com)
is defined to redirect to /projects and in line 7 to 10 it is defined that
the /project rout is controlled by the ProjectCtrl and rendered with the
views/projects.html template.

1 window.angular.module(’scegratooApp’)
2 .service(’moveables’, function () {
3 return new Array()
4 })

Listing 18: This module creates an Array that can be injected in multiple
other modules. These modules all share the same Array, since services are
singletons. service’s first argument is the service’s name, that can be used
by other modules by importing it.

4.2.2 React

React is utilized by SceGraToo to render the tree-view that gives a more
structured view of the scene-graph than the rendered scene does.

React works by creating components and nesting them. Listing 21 shows

28

4.2 Client 4 IMPLEMENTATION

1 angular.module(’scegratooApp’)
2 .service(’MoveableUtils’, function (moveables) {
3 return {
4 logMoveables: () => console.log(moveables)
5 }
6 })

Listing 19: This module requests the moveables module to be injected.

1 <sgt-navigation-bar>
2 </sgt-navigation-bar>
3 <div class="sash">
4 <h3>
5 Editable files for {{project.name}}
6 </h3>
7 <div ng-repeat="file in project.files | orderBy:’view’">
8 <div ng-show="file.view">
9 {{file.view}} -

10 <a
11 href="#/projects/{{projectName}}/

{{file.view}}/{{file.path}}">↪→

12 {{file.path}}
13
14 </div>
15 </div>
16 </div>

Listing 20: A template that renders projects that the controller retrieved
from the server

the TreeView component. The TreeNode is another component that handles
a specific tree-view-node. Components keep instantiating and returning com-
ponents until the whole scene-graph is traversed. In Listing 22 it is shown
how it is rendered to the DOM. The HTML syntax inside the JavaScript code
is simply syntactic sugar and is transpiled into normal JavaScript before be-
ing evaluated (the transpiled equivalent of Listing 22 is shown in Listing
23).

Using react, the view virtually becomes a function of its input. The input
is the root node of the scene-graph, the X3D node.

The parsing and rendering process can be described as follows:

29

4.2 Client 4 IMPLEMENTATION

1. Choose a graph node as the root,
2. call the node component with that graph node,
3. instantiate corresponding components for each of the nodes attribute,
4. if the graph node has child nodes, call the node component again with

each child node and return their return values or
5. if the graph node has no children, return an empty element.

1 React.createClass({
2 displayName: ’TreeView’,
3 propTypes: {
4 data: React.PropTypes.object.isRequired
5 },
6 render: function () {
7 if (this.props.data.runtime) {
8 return (
9 <TreeNode

10 data={this.props.data.querySelector(’scene’)}
11 runtime={this.props.data.runtime}
12 />
13)
14 } else {
15 return <div/>
16 }
17 }
18 })

Listing 21: The TreeView component is instantiated with a node. Its ren-
der function returns an instantiated TreeNode unless the given node has no
runtime property, in that case it just returns an empty div.

1 const treeViewContainer = document.querySelector(’#container’)
2 const x3dNode = document.querySelector(’x3d’)
3 React.render(<TreeView data={x3dNode} />, treeViewContainer)

Listing 22: Shows how react renders to the DOM. The treeViewContainer
is the the DOM element react will render into. x3dNode is the scene-graph
in the DOM.

30

4.2 Client 4 IMPLEMENTATION

1 const treeViewContainer = document.querySelector(’#container’)
2 const x3dNode = document.querySelector(’x3d’)
3 React.render(React.createElement(TreeView, { data: x3dNode }),

treeViewContainer)↪→

Listing 23: Shows the transpilation output of Listing 22. This is standard
compliant JavaScript.

4.2.3 Synchronization Process

Synchronizing the tree-view when the scene-graph changes, is done by calling
React.render again, just like in Listing 22. React calculates the changes
that need to be done to update the DOM and applies these.

If the tree-view changes the scene-graph, the process is repeated. Listing
24 show a check box component. It receives a property called owner. That
is a scene-graph node. Nodes in X3DOM have the render attribute. If a
attribute is true, that node and all its children, with their render attribute
sent to true, are rendered, if not, they are not visible. The component is
showing the state of the the owner’s render attribute’s state. When the
user clicks the check box, the owner’s attribute is changed. The component
does not have to update the DOM node. React is doing it the next time
React.render is called. This is a simple example, but the concept holds up
for more complicated interactions like adding new nodes or moving via drag
and drop.

31

4.2 Client 4 IMPLEMENTATION

1 const TreeNodeAttributeRender = React.createClass({
2 displayName: ’TreeNodeAttributeRender’,
3 propTypes: {
4 owner: React.PropTypes.object.isRequired,
5 },
6 changeHandler: function (event) {
7 if (event.currentTarget.checked) {
8 this.props.owner.setAttribute(’render’, true)
9 } else {

10 this.props.owner.setAttribute(’render’, false)
11 }
12 },
13 render: function () {
14 const attribute = this.props.owner.getAttribute(’render’)
15 const checked = render === ’true’
16

17 return <input type=’checkbox’ checked={checked}
onChange={this.changeHandler} />↪→

18 }
19 })

Listing 24: A component that renders a check box that show the owner ren-
der property’s state. Clicking the check box changes the owner’s property’s
state.

32

5 CONCLUSION

5 Conclusion

The presented work explores the planning and the implementation of a 3D
composition tool. The created scene composition tool, SceGraToo, enables
the user to:

• Upload a R3D project,
• visualize the scene,
• translate, rotate and scale any 3D object,
• remove 3D objects,
• reorder the the 3D objects in the the tree-view,
• add new objects via dragging them over the tree-view and dropping

them on any group or transform node,
• save the changed scene on the server and
• download it again.

And all of that is possible from within the browser. The downloaded
project can be further processed with he R3D framework. What couldn’t
be implemented, due to time constraints, is a way to synchronize a scene
between browser sessions and allow multiple users to change one scene.

5.1 Example

In the following I’ll demonstrate an example. Listing 25 shows an X3D scene
with 3 cubes. All 3 cubes lie in the origin of the coordinate system (see
Figures 15 and 16). After moving the cubes via the 3D scene and refining
their translations via the tree view (Figure 18) the cubes appear stacked, as
can be seen in Figure 17. In Listing 26 the changes transform nodes can be
seen.

33

5.1 Example 5 CONCLUSION

<group>
<transform translation="0 0 0">

<inline>
<Shape>

<Appearance>
<Material></Material>

</Appearance>
<Box></Box>

</Shape>
</inline>
<transform translation="0,0,0">

<inline>
<Shape>

<Appearance>
<Material></Material>

</Appearance>
<Box></Box>

</Shape>
</inline>
<transform translation="0,0,0">

<inline>
<Shape>

<Appearance>
<Material></Material>

</Appearance>
<Box></Box>

</Shape>
<Shape>

<Appearance>
<Material></Material>

</Appearance>
<Box></Box>

</Shape>
</inline>

</transform>
</transform>

</transform>
</group>

Listing 25: A group with 3 nodes with all transform’s translation attributes
set to 0,0,0.

34

5.1 Example 5 CONCLUSION

<group>
<transform translation="0 0 0">

<inline>
<Shape>

<Appearance>
<Material></Material>

</Appearance>
<Box></Box>

</Shape>
</inline>
<transform translation="0,3,0">

<inline>
<Shape>

<Appearance>
<Material></Material>

</Appearance>
<Box></Box>

</Shape>
</inline>
<transform translation="0,3,0">

<inline>
<Shape>

<Appearance>
<Material></Material>

</Appearance>
<Box></Box>

</Shape>
<Shape>

<Appearance>
<Material></Material>

</Appearance>
<Box></Box>

</Shape>
</inline>

</transform>
</transform>

</transform>
</group>

Listing 26: A group with 3 nodes where two transforms’ translation at-
tributes are set to 0,3,0, thus stacking the cubes.

35

BIBLIOGRAPHY BIBLIOGRAPHY

Bibliography

[1] URL http://www.realityprime.com/blog/2007/06/

scenegraphs-past-present-and-future/.

[2] URL http://www.web3d.org/x3d/what-x3d.

[3] URL http://www.x3dom.org.

[4] URL http://www.w3.org/Graphics/SVG/.

[5] URL http://www.w3.org/TR/html5/scripting-1.html#

the-canvas-element.

[6] URL https://www.khronos.org/webgl/.

[7] URL http://3d.meteor.com/.

[8] URL https://en.wikipedia.org/wiki/Gizmo.

[9] URL http://doc.x3dom.org/author/PointingDeviceSensor/

X3DDragSensorNode.html.

[10] URL http://doc.x3dom.org/author/PointingDeviceSensor/

SphereSensor.html.

[11] URL http://doc.x3dom.org/author/PointingDeviceSensor/

CylinderSensor.html.

[12] URL http://doc.x3dom.org/author/PointingDeviceSensor/

PlaneSensor.html.

[13] URL https://github.com/x3dom/component-editor.

[14] URL https://github.com/x3dom/component-editor/issues/1.

[15] URL https://github.com/mrdoob/three.js/wiki/

JSON-Geometry-format-4.

[16] URL http://paraviewweb.kitware.com/.

[17] URL https://nodejs.org/.

[18] URL http://koajs.com/.

36

http://www.realityprime.com/blog/2007/06/scenegraphs-past-present-and-future/
http://www.realityprime.com/blog/2007/06/scenegraphs-past-present-and-future/
http://www.web3d.org/x3d/what-x3d
http://www.x3dom.org
http://www.w3.org/Graphics/SVG/
http://www.w3.org/TR/html5/scripting-1.html#the-canvas-element
http://www.w3.org/TR/html5/scripting-1.html#the-canvas-element
https://www.khronos.org/webgl/
http://3d.meteor.com/
https://en.wikipedia.org/wiki/Gizmo
http://doc.x3dom.org/author/PointingDeviceSensor/X3DDragSensorNode.html
http://doc.x3dom.org/author/PointingDeviceSensor/X3DDragSensorNode.html
http://doc.x3dom.org/author/PointingDeviceSensor/SphereSensor.html
http://doc.x3dom.org/author/PointingDeviceSensor/SphereSensor.html
http://doc.x3dom.org/author/PointingDeviceSensor/CylinderSensor.html
http://doc.x3dom.org/author/PointingDeviceSensor/CylinderSensor.html
http://doc.x3dom.org/author/PointingDeviceSensor/PlaneSensor.html
http://doc.x3dom.org/author/PointingDeviceSensor/PlaneSensor.html
https://github.com/x3dom/component-editor
https://github.com/x3dom/component-editor/issues/1
https://github.com/mrdoob/three.js/wiki/JSON-Geometry-format-4
https://github.com/mrdoob/three.js/wiki/JSON-Geometry-format-4
http://paraviewweb.kitware.com/
https://nodejs.org/
http://koajs.com/

BIBLIOGRAPHY BIBLIOGRAPHY

[19] URL https://developers.google.com/speed/articles/reflow.

[20] URL https://developer.mozilla.org/en-US/docs/Web/HTTP#HTTP_

request_methods.

[21] URL http://tu-freiberg.de/fakult1/inf/professuren/

virtuelle-realitaet-und-multimedia/forschung-jung/

roundtrip3d.

[22] URL http://threejs.org/editor/.

[23] URL http://doc.x3dom.org/tutorials/animationInteraction/

transformations/example.html.

[24] URL https://docs.angularjs.org/guide/bootstrap.

[25] URL http://wiki.blender.org/index.php/Doc:2.4/Manual/3D_

interaction/Transform_Control/Manipulators.

[26] Glinz, Martin und Samuel A. Fricker. On shared understanding in
software engineering: An essay. Comput. Sci., 30(3-4):363–376, Au-
gust 2015. ISSN 1865-2034. URL http://dx.doi.org/10.1007/

s00450-014-0256-x.

[27] Jung, Bernhard, Matthias Lenk und Arnd Vitzthum. Structured devel-
opment of 3d applications: Round-trip engineering in interdisciplinary
teams. Comput. Sci., 30(3-4):285–301, August 2015. ISSN 1865-2034.
URL http://dx.doi.org/10.1007/s00450-014-0258-8.

[28] Lenk, Matthias, Arnd Vitzthum und Bernhard Jung. Model-driven
iterative development of 3d web-applications using ssiml, x3d and
javascript. In Proceedings of the 17th International Conference on 3D
Web Technology, Web3D ’12, Seite 161–169, New York, NY, USA, 2012.
ACM. ISBN 978-1-4503-1432-9. URL http://doi.acm.org/10.1145/

2338714.2338742.

[29] Marion, Charles und Julien Jomier. Real-time collaborative scientific
webgl visualization with websocket. In Proceedings of the 17th Inter-
national Conference on 3D Web Technology, Web3D ’12, Seite 47–50,
New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1432-9. URL
http://doi.acm.org/10.1145/2338714.2338721.

37

https://developers.google.com/speed/articles/reflow
https://developer.mozilla.org/en-US/docs/Web/HTTP#HTTP_request_methods
https://developer.mozilla.org/en-US/docs/Web/HTTP#HTTP_request_methods
http://tu-freiberg.de/fakult1/inf/professuren/virtuelle-realitaet-und-multimedia/forschung-jung/roundtrip3d
http://tu-freiberg.de/fakult1/inf/professuren/virtuelle-realitaet-und-multimedia/forschung-jung/roundtrip3d
http://tu-freiberg.de/fakult1/inf/professuren/virtuelle-realitaet-und-multimedia/forschung-jung/roundtrip3d
http://threejs.org/editor/
http://doc.x3dom.org/tutorials/animationInteraction/transformations/example.html
http://doc.x3dom.org/tutorials/animationInteraction/transformations/example.html
https://docs.angularjs.org/guide/bootstrap
http://wiki.blender.org/index.php/Doc:2.4/Manual/3D_interaction/Transform_Control/Manipulators
http://wiki.blender.org/index.php/Doc:2.4/Manual/3D_interaction/Transform_Control/Manipulators
http://dx.doi.org/10.1007/s00450-014-0256-x
http://dx.doi.org/10.1007/s00450-014-0256-x
http://dx.doi.org/10.1007/s00450-014-0258-8
http://doi.acm.org/10.1145/2338714.2338742
http://doi.acm.org/10.1145/2338714.2338742
http://doi.acm.org/10.1145/2338714.2338721

BIBLIOGRAPHY BIBLIOGRAPHY

[30] Martin Lesage, Martin Lesage, Gilles Raîche. A blender plugin for
collaborative work on the articiel platform. 2007.

[31] Mikowski, Michael und Josh Powell. Single Page Web Applications:
JavaScript End-to-end. Manning Publications Co., Greenwich, CT,
USA, 1st edition, 2013. ISBN 1617290750, 9781617290756.

38

BIBLIOGRAPHY BIBLIOGRAPHY

39

LIST OF LISTINGS LIST OF LISTINGS

List of Listings

1 Example X3D group, showing the use of def and use at-
tributes . Figure 2 shows the rendered car. 6

2 This shows a set of changes of 4 polygons and how they where
moved. 9

3 PlaneSensor node to register drag event on its siblings. This
is part of the scene depicted in Figure 8. 11

4 The JSON format used by the component editor to save scenes. 12

5 An example server in Node.js, using the http module in its
standard library. 14

6 An example server utilizing the Koa framework. 15

7 Generated X3D example scene. 17

8 Simplified tree-view structure. 18

9 Old Virtual DOM . 21

10 Virtual DOM with newly created li node. 21

11 Patch . 22

12 Example input data. 23

13 The initial template, node is the node from the data in List-
ing 12. 23

14 The template expands itself, putting the node’s name into a
span and adding a nodelist directive, that expands the node’s
children. 23

15 The nodelist expands the children array and renders a treen-
ode for every child. 24

16 The treenode directive expands the nodes and renders their
names, since there are no nodes left to render they stop. . . . 24

17 This is how SceGraToo is initialized. It also shows how the
routing is defined. E.g. in line 4 to 6 for the index route (the
one that is requested when the request contains only the do-
main: www.example.com) is defined to redirect to /projects

and in line 7 to 10 it is defined that the /project rout is con-
trolled by the ProjectCtrl and rendered with the views/projects.html
template. 28

40

LIST OF LISTINGS LIST OF LISTINGS

18 This module creates an Array that can be injected in multi-
ple other modules. These modules all share the same Array,
since services are singletons. service’s first argument is the
service’s name, that can be used by other modules by im-
porting it. 28

19 This module requests the moveables module to be injected. . 29
20 A template that renders projects that the controller retrieved

from the server . 29
21 The TreeView component is instantiated with a node. Its

render function returns an instantiated TreeNode unless the
given node has no runtime property, in that case it just returns
an empty div. 30

22 Shows how react renders to the DOM. The treeViewContainer
is the the DOM element react will render into. x3dNode is the
scene-graph in the DOM. 30

23 Shows the transpilation output of Listing 22. This is standard
compliant JavaScript. 31

24 A component that renders a check box that show the owner

render property’s state. Clicking the check box changes the
owner’s property’s state. 32

25 A group with 3 nodes with all transform’s translation at-
tributes set to 0,0,0. 34

26 A group with 3 nodes where two transforms’ translation at-
tributes are set to 0,3,0, thus stacking the cubes. 35

41

LIST OF FIGURES LIST OF FIGURES

List of Figures

1 Figures 1a-c show common orientations the 3D model of a
wheel could have. Figure 1d shoes the worst case. 44

2 The rendered car from Listing 1. 45
3 This Figure shows the graphical editor for SSIML. In partic-

ular it shows a scene describing a bike [21] 46
4 The development work-flow described proposed by R3D [27]. . 47
5 This is a scene in 3D Meteor showing, a house and a garden

of cubes. 48
6 The same cube in Blender with different gizmos/transformers

enabled. 49
7 Translate gizmos along x, y and z axes as well as gizmos that

translate the cube along the xy, xz, yz and frustum planes [22]. 50
8 An official X3DOM tutorial for using X3D sensors to create

gizmos [23]. 51
9 The rendered tree-view. 51
10 The X3D scene inside the DOM. 52
11 About half of the DOM elements that make up a tree-view of

only three tree-view-nodes: a scene, transform and inline
node. 52

12 The DOM elements that make up a tree-view-node for an
inline. 53

13 The rendered tree-view-node of an inline. 53
14 This is angulars bootstrapping process [24]. 53
15 3 cubes, all centered in the origin of the coordinate system. . 54
16 The tree view corresponding to Figure 15. 55
17 3 cubes stacked. 56
18 The tree view corresponding to Figure 17. 57

43

FIGURES FIGURES

a) b)

c) d)

Figure 1: Figures 1a-c show common orientations the 3D model of a wheel
could have. Figure 1d shoes the worst case.

44

FIGURES FIGURES

Figure 2: The rendered car from Listing 1.

45

FIGURES FIGURES

Figure 3: This Figure shows the graphical editor for SSIML. In particular it
shows a scene describing a bike [21]

.

46

FIGURES FIGURES

Figure 4: The development work-flow described proposed by R3D [27].

47

FIGURES FIGURES

Figure 5: This is a scene in 3D Meteor showing, a house and a garden of
cubes.

48

FIGURES FIGURES

a) A translation gizmo [25]. b) Rotation gizmo [25].

c) Scale gizmo [25]. d) All gizmos together [25].

Figure 6: The same cube in Blender with different gizmos/transformers en-
abled.

49

FIGURES FIGURES

Figure 7: Translate gizmos along x, y and z axes as well as gizmos that
translate the cube along the xy, xz, yz and frustum planes [22].

50

FIGURES FIGURES

Figure 8: An official X3DOM tutorial for using X3D sensors to create gizmos
[23].

Figure 9: The rendered tree-view.

51

FIGURES FIGURES

Figure 10: The X3D scene inside the DOM.

Figure 11: About half of the DOM elements that make up a tree-view of
only three tree-view-nodes: a scene, transform and inline node.

52

FIGURES FIGURES

Figure 12: The DOM elements that make up a tree-view-node for an inline.

Figure 13: The rendered tree-view-node of an inline.

Figure 14: This is angulars bootstrapping process [24].

53

FIGURES FIGURES

Figure 15: 3 cubes, all centered in the origin of the coordinate system.

54

FIGURES FIGURES

Figure 16: The tree view corresponding to Figure 15.

55

FIGURES FIGURES

Figure 17: 3 cubes stacked.

56

FIGURES FIGURES

Figure 18: The tree view corresponding to Figure 17.

57

	Contents
	1 Introduction
	1.1 Motivation
	1.2 Scope

	2 Basics and Related Work
	2.1 Scene-Graph
	2.1.1 Culling
	2.1.2 Transformations
	2.1.3 Reusing Nodes or Subtrees

	2.2 Declarative Scene Description via X3D
	2.3 Declarative Scene Description for the Web via X3DOM
	2.4 3D Application Modeling via SSIML
	2.5 Roundtrip 3D
	2.6 Related Work
	2.6.1 3D Meteor
	2.6.2 Collaborative Working with Blender
	2.6.3 Gizmos
	2.6.4 Component Editor
	2.6.5 Real-Time Collaborative Scientific WebGL Visualization with Web Sockets
	2.6.6 ParaViewWeb

	3 Concept
	3.1 Server
	3.1.1 Node.js
	3.1.2 Koa

	3.2 Client
	3.2.1 Synchronization Process
	Terminology
	Data Binding

	3.3 Communication

	4 Implementation
	4.1 Server
	4.2 Client
	4.2.1 Angular
	Bootstrapping
	Modularisation and Dependency Injection
	Views

	4.2.2 React
	4.2.3 Synchronization Process

	5 Conclusion
	5.1 Example

	Bibliography
	List of Listings
	List of Figures

